Refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0564P)^2]$ Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ wR(F²) = 0.090 + 0.4624*P*] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ S = 1.080 $\Delta \rho_{\rm max} = 0.605 \ {\rm e} \ {\rm \AA}^{-3}$ 2234 reflections $\Delta \rho_{\rm min}$ = -0.439 e Å⁻³ 181 parameters H-atom parameters Extinction correction: none Scattering factors from constrained International Tables for Crystallography (Vol. C)

			•		
T_{a} L_{a} 1	Calantad	geometric parameters	1 .	0	۱.
таріе і	Selecten	opometric narameters	IA.		Ł

	0	•	
CuO1	1.8918 (18)	Cu—N2	2.032 (2)
CuN1	1.920 (2)	Cu—O4	2.510(2)
Cu02	1.9357 (18)		
O1-Cu-N1	94.24 (9)	O2-Cu-N2	91.52 (8)
O1-CuO2	177.73 (9)	01-Cu04	94.71 (8)
N1—Cu—O2	84.83 (8)	N1-Cu-04	93.24 (8)
O1-Cu-N2	89.35 (9)	O2-CuO4	87.42 (8)
N1—Cu—N2	176.13 (9)	N2—Cu—O4	87.88 (8)

All H atoms were found from difference-Fourier syntheses and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}$ (carrier atom). The residual electron density and the deepest hole of 0.605 and -0.439 e Å⁻³, respectively, are close to the Cu atom at distances of 1.12 and 0.84 Å, respectively.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994). Cell refinement: CAD-4 EXPRESS. Data reduction: XCAD-4 (Harms, 1997). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: XP in SHELXTL (Siemens, 1996b). Software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1247). Services for accessing these data are described at the back of the journal.

References

- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. (1997). XCAD-4. Program for the Reduction of CAD-4 Diffractometer Data. University of Marburg, Germany.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Release 97-1. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1996a). XPREP in SHELXTL. Program for Data Preparation and Reciprocal Space Exploration. Version 5.05. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996b). XP in SHELXTL. Molecular Graphics Program. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (1994). PLATON. Molecular Geometry Program. University of Utrecht, The Netherlands.
- Ueki, T., Ashida, T., Sasada, Y. & Kakudo, M. (1967). Acta Cryst. 22, 870-878.
- Warda, S. A. (1994). Bioanorganische Kupfer(II) Komplexe mit dreizähnigen O,N,O Chelat-Dianionen und additiven einzähnigen Donorliganden. Aachen: Verlag Shaker.
- Warda, S. A. (1997). Acta Cryst. C53, 1186-1188.

Acta Cryst. (1998). C54, 191-193

{2-[2-(Salicylideneaminomethyl)phenyliminomethyl]phenolato(2–)-N,N',O,O'}copper(II)

Yoshiyuki Kani,^a Shigeru Ohba,^a Takashi Ishikawa,^b Masatomi Sakamoto^b and Yuzo Nishida^b

^aDepartment of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223, Japan, and ^bDepartment of Chemistry, Faculty of Science, Yamagata University, Yamagata 990, Japan. E-mail: ohba@chem.keio.ac.jp

(Received 25 July 1997; accepted 15 October 1997)

Abstract

In the title compound, $[Cu(C_{21}H_{16}N_2O_2)]$ or [Cu-(salabza)], the six-membered diamine chelate ring moiety takes a skew-boat form with Cu—N—C—C torsion angles of -47.2 (4) and -59.6 (3)°. The geometry around the Cu atom is tetrahedrally distorted from square planar. The dihedral angle between the two CuNO planes is 29 (1)°, and those between the CuN₂ and CuNO planes are 19 (1) and 21 (1)°.

Comment

The tetradentate Schiff base ligand derived from salicylaldehyde and 2-amino-1-benzylamine is abbreviated as $H_2(salabza)$. The Mn^{III} complex [Mn(salabza)Cl] shows high activity for dioxygen activation in the presence of cyclohexanecarboxaldehyde (Suzuki *et al.*, 1997). The corresponding Cu^{II} complex, [Cu(salabza)], (I), was prepared, but it has low activity as a catalyst. This may indicate little formation of an octahedral acylperoxo complex, [Cu(salabza){OC(R)OO}]⁻, from [Cu(salabza)], dioxygen and aldehyde [OC(R)OO⁻ is a bidentate peroxo ligand with an alkyl group R].

The present crystal structure analysis of [Cu(salabza)] shows that there is a tetrahedral distortion of the coordination plane around the Cu1 atom which can be quantified by the O2–N5–N4–O3 coordination torsion angle of $26.8 (2)^{\circ}$ as well as by the *trans*-N—Cu—O bond angles of 157.8 (2) and 160.3 (2)°, which are much less than the sum of the N—Cu—N and one of the

N—Cu—O chelate angles (ca 187°). The six-membered diamine chelate ring moiety takes a skew-boat form, with Cu-N-C-C torsion angles of -47.2(4) and $-59.6(3)^{\circ}$. These results can be compared with the coordination geometry around the Cu^{II} atom in [Cu(sal)] [sal is N, N'-ethylenebis(salicylideneiminato)], which is square planar, with an O-N-N-O coordination torsion angle less than 5° (Baker et al., 1970a,b; Milburn et al., 1974), or a little skewed, having tetrahedral distortion with an O-N-N-O coordination torsion angle of 19° (Ferrari et al., 1976). The six-membered diamine chelate ring moiety of [Cu(salpn)] [salpn is N, N'-trimethylenebis(salicylideneiminato)] takes a flattened skew-chair form, with Cu-N-C-C torsion angles of 1(1) and 44 (1)°, and an O-N-N-O coordination torsion angle of 11 (1)° (Drew et al., 1985). The chelate ring in [Cu(sal-2-OH-pn)] [sal-2-OH-pn is N,N'-(2-hydroxytrimethylene)bis(salicylideneiminato)] takes a skew-boat form. with Cu—N—C—C torsion angles of 54 (1) and 67 (1) $^{\circ}$, leading to a remarkable tetrahedral distortion with an O-N-N-O coordination torsion angle of 34(1)° (Kitajima et al., 1986).

In contrast to the low activity of [Cu(salabza)], the mononuclear copper(II) complex [Cu(bdpg)Cl]⁺ [bdpg is N, N-bis(2-pyridylmethyl)- β -alanine-amide], with a tripodal ligand containing an amide group, exhibits high activity for the oxygenation reaction of cyclohexane in the presence of hydrogen peroxide, suggesting Refinement the formation of a square-pyramidal peroxo complex, [Cu(bdpg)(OOH)]⁺, having an intramolecular Cu-O-O-H···O hydrogen bond (Okuno et al., 1997).

Fig. 1. The molecular structure of (I) with displacement ellipsoids at the 50% probability level. H atoms are represented by circles of radii 0.1 Å.

Experimental

The Schiff base H₂(salabza) was prepared from salicylaldehyde and 2-amino-1-benzylamine. Copper(II) acetate monohydrate was added to a methanol solution of $H_2(salabza)$ and the resulting precipitate was filtered off and recrystallized from an ethanol solution.

Mo $K\alpha$ radiation

Cell parameters from 25

 $0.55 \times 0.20 \times 0.10$ mm

 $\lambda = 0.71073 \text{ Å}$

reflections $\theta = 10 - 15^{\circ}$

 $\mu = 1.312 \text{ mm}^{-1}$

T = 298 K

Prism

Black

Crystal data

 $[Cu(C_{21}H_{16}N_2O_2)]$ $M_r = 391.92$ Monoclinic $P2_1/a$ a = 16.546(3) Å b = 8.970(2) Å c = 11.507(2) Å $\beta = 98.90(2)^{\circ}$ $V = 1687.3 (5) \text{ Å}^3$ Z = 4 $D_x = 1.543 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Rigaku AFC-5 diffractom-	2071 reflections with
eter	$ F_o > 3\sigma(F_o)$
θ -2 θ scans	$R_{\rm int} = 0.021$
Absorption correction:	$\theta_{\rm max} = 27.5^{\circ}$
by integration (Coppens	$h = -21 \rightarrow 21$
et al., 1965)	$k = 0 \rightarrow 11$
$T_{\min} = 0.610, T_{\max} = 0.788$	$l = 0 \rightarrow 14$
4057 measured reflections	3 standard reflections
3870 independent reflections	every 100 reflections
	intensity decay: none

Refinement on F	$w = 1/[\sigma^2(F) + 0.000225F^2]$
R = 0.042	$(\Delta/\sigma)_{\rm max} = 0.01$
wR = 0.038	$(\Delta/\sigma)_{\rm max} = 0.01$ $\Delta\rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.21	$\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$
2071 reflections	Extinction correction: none
235 parameters	Scattering factors from Inter-
H atoms riding with $U_{iso} =$	national Tables for X-ray
0.08 Å^2	Crystallography (Vol. IV)

Table 1. Selected geometric parameters (Å, °)

Cu1—O2	1.889 (3)	O3—C26	1.303 (5)
Cu1-O3	1.902 (3)	N4—C19	1.434 (5)
Cu1—N4	1.965 (3)	N4—C20	1.295 (6)
Cu1—N5	1.943 (3)	N5—C12	1.288 (5)
O2—C6	1.304 (5)	N5-C13	1.492 (5)
O2-Cu1-O3	87.7 (2)	Cu1-N4-C19	117.8 (3)
O2-Cu1-N4	157.8 (2)	Cu1-N4-C20	123.5 (3)
O2-Cu1-N5	93.5 (2)	C19—N4—C20	118.5 (4)
O3-Cu1-N4	92.8 (2)	Cu1-N5C12	125.1 (3)
O3-Cu1-N5	160.3 (2)	Cu1-N5-C13	116.7 (3)
N4—Cu1—N5	93.5 (2)	C12-N5C13	118.1 (4)
Cu1-02-C6	128.0 (3)	N5-C13-C14	109.4 (3)
Cu1-03-C26	127.8 (3)	N4-C19-C14	118.4 (4)

The positions of all the H atoms were calculated geometrically and a riding model was used in their refinement (C-H 0.96 Å).

Data collection: AFC/MSC Diffractometer Control System (Rigaku Corporation, 1993). Cell refinement: AFC/MSC Diffractometer Control System. Data reduction: local programs. Program(s) used to solve structure: CRYSTAN-GM (Edwards et al., 1996). Program(s) used to refine structure: CRYSTAN-GM. Molecular graphics: CRYSTAN-GM. Software used to prepare material for publication: CRYSTAN-GM.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1184). Services for accessing these data are described at the back of the journal.

References

- Baker, E. N., Hall, D. & Waters, T. N. (1970a). J. Chem. Soc. A, pp. 400-405.
- Baker, E. N., Hall, D. & Waters, T. N. (1970b). J. Chem. Soc. A, pp. 406-409.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
- Drew, M. G. B., Prasad, R. N. & Sharma, R. P. (1985). Acta Cryst. C41, 1755–1758.
- Edwards, C., Gilmore, C. J., Mackay, S. & Stewart, N. (1996). CRYSTAN-GM. Version 6.3.3. Computer Program for the Solution and Refinement of Crystal Structures. MacScience, Japan.
- Ferrari, M. B., Fava, G. G. & Pelizzi, C. (1976). Acta Cryst. B32, 901-908.
- Kitajima, N., Whang, K., Moro-oka, Y., Uchida, A. & Sasada, Y. (1986). J. Chem. Soc. Chem. Commun. pp. 1504–1505.
- Milburn, H., Truter, M. R. & Vickery, B. L. (1974). J. Chem. Soc. Dalton Trans. pp. 841-846.
- Okuno, T., Ohba, S. & Nishida, Y. (1997). Polyhedron, 16, 3765-3774.
- Rigaku Corporation (1993). AFC/MSC Diffractometer Control System. Rigaku Corporation, Tokyo, Japan.
- Suzuki, M., Ishikawa, T., Harada, A., Ohba, S., Sakamoto, M. & Nishida, Y. (1997). *Polyhedron*, 16, 2553-2561.

Acta Cryst. (1998). C54, 193-195

A Dimeric Copper(II) 4-Chlorophenoxyisobutyrate Adduct with Methanol and a Monomeric Copper(II) 4-Chlorophenoxyisobutyrate Adduct with Pyridine

Yoshiyuki Kani,^a Shigeru Ohba,^a Hideaki Matsushima^b and Tadashi Tokii^b

^aDepartment of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223, Japan, and ^bDepartment of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840, Japan. E-mail: ohba@chem.keio.ac.jp

(Received 1 September 1997; accepted 2 October 1997)

Abstract

In the crystal structure of tetrakis(μ -4-chlorophenoxyisobutyrato-O, O')di(methanol-O)dicopper(II) dimethanol solvate, [Cu(pciba)₂(CH₃OH)]₂.2CH₃OH (pcibaH is 4-chlorophenoxyisobutyric acid, C₁₀H₁₁ClO₃), there is a dinuclear Cu^{II} complex which has a typical cage structure with a Cu···Cu distance of 2.6437 (4) Å. The magnetic -2J value is 360 cm^{-1} ($H = -2JS_1.S_2$). In the crystal structure of *trans*-bis(4-chlorophenoxy-isobutyrato-O, O') dipyridinecopper (II), [Cu(pciba)₂-(C₅H₅N)₂], the monomeric Cu^{II} complex has a distorted octahedral coordination.

Comment

The dimeric title compound, (I), has a center of symmetry. The Cu1—O4 bond length is 1.991(2)Å, which is ca 0.02 Å longer than the other Cu1-O(carboxyl) bonds as a result of the hydrogen bond between the O4 atom and crystal methanol (O11). The dimeric copper(II) complexes related by translation along c are connected by two hydrogen-bond bridges, $Cu1 - O4 + H11 - O11 + H10^{i} - O10^{i} - Cu^{i}$ and $Cu1 - Cu^{i}$ O10—H10··· $O11^{i}$ — $H11^{i}$ ··· $O4^{i}$ — Cu^{i} [symmetry code: (i) 1-x, -y, -1-z]. Several kinds of dimeric copper(II) phenoxyalkanoates have been prepared and their crystal structures published (Reck & Jaehnig, 1979; Smith et al., 1985; Mak et al., 1987). However, their magnetic data were not reported. In this study, the magnetic susceptibility of (I) was measured using the Faraday method over a temperature range of 80-300 K, and the -2J and g values were determined to be 360 cm^{-1} and 2.22, respectively, with the mole fraction of the monomeric Cull impurity being 1.3%. It was assumed that crystal methanol molecules were lost from the crystals under reduced pressure. The -2J value is comparable with those of [Cu(Ph₂MeCCOO)₂(EtOH)]₂.EtOH $(-2J = 347 \text{ cm}^{-1}; \text{ Steward et al., 1996})$ and [Cu- $(PhMe_2CCOO)_2(H_2O)]_2 (-2J = 348 \text{ cm}^{-1}; \text{Fujita et al.},$ 1993). This indicates that there is a negligible influence on the antiferromagnetic interaction when a phenyl group is replaced by a phenoxy group bonded at the α -carbon of the bridging carboxylate ions.

Acta Crystallographica Section C ISSN 0108-2701 © 1998