Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.090$
$S=1.080$
2234 reflections
181 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0564 P)^{2}\right. \\
& +0.4624 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.605 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.439 \mathrm{e}^{-3} \\
& \text { Extinction correction: none } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crystallography (Vol. C) }
\end{aligned}
$$

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{O} 1$	$1.8918(18)$	$\mathrm{Cu}-\mathrm{N} 2$	$2.032(2)$
$\mathrm{Cu}-\mathrm{N} 1$	$1.920(2)$	$\mathrm{Cu}-\mathrm{O} 4$	$2.510(2)$
$\mathrm{Cu}-\mathrm{O} 2$	$1.9357(18)$		
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N} 1$	$94.24(9)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 2$	$91.52(8)$
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{O} 2$	$177.73(9)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 4$	$94.71(8)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 2$	$84.83(8)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 4$	$93.24(8)$
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N} 2$	$89.35(9)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 4$	$87.42(8)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	$176.13(9)$	$\mathrm{N} 2-\mathrm{Cu}-\mathrm{O} 4$	$87.88(8)$

All H atoms were found from difference-Fourier syntheses and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom). The residual electron density and the deepest hole of 0.605 and $-0.439 \mathrm{e} \AA^{-3}$, respectively, are close to the Cu atom at distances of 1.12 and $0.84 \AA$, respectively.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994). Cell refinement: CAD-4 EXPRESS. Data reduction: XCAD-4 (Harms, 1997). Program(s) used to solve structure: SHELXS 97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: XP in SHELXTL (Siemens, 1996b). Software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1247). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
Harms, K. (1997). XCAD-4. Program for the Reduction of CAD-4 Diffractometer Data. University of Marburg, Germany.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Release 97-1. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1996a). XPREP in SHELXTL. Program for Data Preparation and Reciprocal Space Exploration. Version 5.05. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996b). XP in SHELXTL. Molecular Graphics Program. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1994). PLATON. Molecular Geometry Program. University of Utrecht, The Netherlands.
Ueki, T., Ashida, T., Sasada, Y. \& Kakudo, M. (1967). Acta Cryst. 22, 870-878.
Warda, S. A. (1994). Bioanorganische Kupfer(II) Komplexe mit dreizähnigen O, N, O Chelat-Dianionen und additiven einzähnigen Donorliganden. Aachen: Verlag Shaker.
Warda, S. A. (1997). Acta Cryst. C53, 1186-1188.

Acta Cryst. (1998). C54, 191-193

\{2-[2-(Salicylideneaminomethyl)phenyl-iminomethyl]phenolato(2-)- $\left.N, N^{\prime}, O, O^{\prime}\right\}$ copper(II)

Yoshiyuki Kani, ${ }^{a}$ Shigeru Ohba, ${ }^{a}$ Takashi Ishikawa, ${ }^{b}$ Masatomi Sakamoto ${ }^{b}$ and Yuzo Nishida ${ }^{b}$
${ }^{a}$ Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-I, Kohoku-ku, Yokohama 223, Japan, and ${ }^{b}$ Department of Chemistry, Faculty of Science, Yamagata University, Yamagata 990, Japan. E-mail: ohba@chem.keio.ac.jp

(Received 25 July 1997; accepted 15 October 1997)

Abstract

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$ or [$\mathrm{Cu}-$ (salabza)], the six-membered diamine chelate ring moiety takes a skew-boat form with $\mathrm{Cu}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ torsion angles of $-47.2(4)$ and $-59.6(3)^{\circ}$. The geometry around the Cu atom is tetrahedrally distorted from square planar. The dihedral angle between the two CuNO planes is $29(1)^{\circ}$, and those between the CuN_{2} and CuNO planes are $19(1)$ and $21(1)^{\circ}$.

Comment

The tetradentate Schiff base ligand derived from salicylaldehyde and 2-amino-1-benzylamine is abbreviated as H_{2} (salabza). The $\mathrm{Mn}^{\text {HI }}$ complex [Mn (salabza) Cl] shows high activity for dioxygen activation in the presence of cyclohexanecarboxaldehyde (Suzuki et al., 1997). The corresponding $\mathrm{Cu}^{\mathrm{II}}$ complex, $[\mathrm{Cu}($ salabza $)$, (I), was prepared, but it has low activity as a catalyst. This may indicate little formation of an octahedral acylperoxo complex, $[\mathrm{Cu}(\text { salabza })\{\mathrm{OC}(R) \mathrm{OO}\}]^{-}$, from [Cu (salabza)], dioxygen and aldehyde $\left[\mathrm{OC}(R) \mathrm{OO}^{-}\right.$is a bidentate peroxo ligand with an alkyl group R].

(I)

The present crystal structure analysis of [$\mathrm{Cu}($ salabza $)]$ shows that there is a tetrahedral distortion of the coordination plane around the Cul atom which can be quantified by the $\mathrm{O} 2-\mathrm{N} 5-\mathrm{N} 4-\mathrm{O} 3$ coordination torsion angle of $26.8(2)^{\circ}$ as well as by the trans $-\mathrm{N}-\mathrm{Cu}-$ O bond angles of $157.8(2)$ and $160.3(2)^{\circ}$, which are much less than the sum of the $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ and one of the
$\mathrm{N}-\mathrm{Cu}-\mathrm{O}$ chelate angles (ca 187°). The six-membered diamine chelate ring moiety takes a skew-boat form, with $\mathrm{Cu}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ torsion angles of -47.2 (4) and $-59.6(3)^{\circ}$. These results can be compared with the coordination geometry around the $\mathrm{Cu}^{1 \mathrm{l}}$ atom in $[\mathrm{Cu}(\mathrm{sal})]$ [sal is N, N^{\prime}-ethylenebis(salicylideneiminato)], which is square planar, with an $\mathrm{O}-\mathrm{N}-\mathrm{N}-\mathrm{O}$ coordination torsion angle less than 5° (Baker et al., 1970a,b; Milburn et al., 1974), or a little skewed, having tetrahedral distortion with an $\mathrm{O}-\mathrm{N}-\mathrm{N}-\mathrm{O}$ coordination torsion angle of 19° (Ferrari et al., 1976). The six-membered diamine chelate ring moiety of [$\mathrm{Cu}(\mathrm{salpn})$] [salpn is N, N^{\prime}-trimethylenebis(salicylideneiminato)] takes a flattened skew-chair form, with $\mathrm{Cu}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ torsion angles of 1 (1) and $44(1)^{\circ}$, and an $\mathrm{O}-\mathrm{N}-\mathrm{N}-\mathrm{O}$ coordination torsion angle of $11(1)^{\circ}$ (Drew et al., 1985). The chelate ring in [Cu(sal-$2-\mathrm{OH}-\mathrm{pn}$)] [sal-2-OH-pn is N, N^{\prime}-(2-hydroxytrimethylene)bis(salicylideneiminato)] takes a skew-boat form, with $\mathrm{Cu}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ torsion angles of 54 (1) and $67(1)^{\circ}$, leading to a remarkable tetrahedral distortion with an O -$\mathrm{N}-\mathrm{N}-\mathrm{O}$ coordination torsion angle of 34 (1) $)^{\circ}$ (Kitajima et al., 1986).

In contrast to the low activity of $[\mathrm{Cu}($ salabza $)]$, the mononuclear copper(II) complex $[\mathrm{Cu}(\mathrm{bdpg}) \mathrm{Cl}]^{+}[\mathrm{bdpg}$ is N, N-bis(2-pyridylmethyl)- β-alanine-amide], with a tripodal ligand containing an amide group, exhibits high activity for the oxygenation reaction of cyclohexane in the presence of hydrogen peroxide, suggesting the formation of a square-pyramidal peroxo complex, $[\mathrm{Cu}(\mathrm{bdpg})(\mathrm{OOH})]^{+}$, having an intramolecular $\mathrm{Cu}-\mathrm{O}-$ $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Okuno et al., 1997).

Fig. 1. The molecular structure of (I) with displacement ellipsoids at the 50% probability level. H atoms are represented by circles of radii 0.1 A .

Experimental

The Schiff base H_{2} (salabza) was prepared from salicylaldehyde and 2-amino-1-benzylamine. Copper(II) acetate monohydrate was added to a methanol solution of H_{2} (salabza)
and the resulting precipitate was filtered off and recrystallized from an ethanol solution.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=391.92$
Monoclinic
$P 2_{1} / a$
$a=16.546$ (3) \AA
$b=8.970(2) \AA$
$c=11.507(2) \AA$
$\beta=98.90(2)^{\circ}$
$V=1687.3(5) \AA^{3}$
$Z=4$
$D_{x}=1.543 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-5 diffractometer
$\theta-2 \theta$ scans
Absorption correction:
by integration (Coppens et al., 1965)
$T_{\text {min }}=0.610, T_{\text {max }}=0.788$
4057 measured reflections
3870 independent reflections

Refinement

Refinement on F
$w^{\prime}=1 /\left[\sigma^{2}(F)+0.000225 F^{2}\right]$
$R=0.042$
$w R=0.038$
$S=1.21$
2071 reflections
235 parameters
H atoms riding with $U_{\mathrm{iso}}=$ $0.08 \AA^{2}$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25
reflections
$\theta=10-15^{\circ}$
$\mu=1.312 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism
$0.55 \times 0.20 \times 0.10 \mathrm{~mm}$
Black
-

Table 1. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

Cu - O 2	1.889 (3)	O3-C26	1.303 (5)
$\mathrm{Cul}-\mathrm{O} 3$	1.902 (3)	N4-C19	1.434 (5)
Cul-N4	1.965 (3)	N4-C20	1.295 (6)
Cul-N5	1.943 (3)	N5-C12	1.288 (5)
O2-C6	1.304 (5)	N5-Cl3	1.492 (5)
$\mathrm{O} 2-\mathrm{Cul}-\mathrm{O} 3$	87.7 (2)	Cul-N4-C19	117.8 (3)
$\mathrm{O} 2-\mathrm{Cul-N4}$	157.8 (2)	$\mathrm{Cu} 1-\mathrm{N} 4-\mathrm{C} 20$	123.5 (3)
$\mathrm{O} 2-\mathrm{Cul}-\mathrm{N} 5$	93.5 (2)	C19-N4-C20	118.5 (4)
$\mathrm{O} 3-\mathrm{Cul}-\mathrm{N} 4$	92.8 (2)	Cul-N5-Cl2	125.1 (3)
O3-Cul-N5	160.3 (2)	Cul-N5-Cl3	116.7 (3)
N4-Cul-N5	93.5 (2)	CI2-N5-Cl3	118.1 (4)
$\mathrm{Cul}-\mathrm{O} 2-\mathrm{C} 6$	128.0 (3)	N5-C13-C14	109.4 (3)
$\mathrm{Cul}-\mathrm{O} 3-\mathrm{C} 26$	127.8 (3)	N4-C19-C14	118.4 (4)

The positions of all the H atoms were calculated geometrically and a riding model was used in their refinement ($\mathrm{C}-\mathrm{H}$ 0.96 A).

Data collection: AFC/MSC Diffractometer Control System (Rigaku Corporation, 1993). Cell refinement: AFC/MSC Diffractometer Control System. Data reduction: local programs. Program(s) used to solve structure: CRYSTAN-GM (Edwards et al., 1996). Program(s) used to refine structure: CRYSTAN-GM. Molecular graphics: CRYSTAN-GM. Software used to prepare material for publication: CRYSTAN-GM.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1184). Services for accessing these data are described at the back of the journal.

References

Baker, E. N., Hall, D. \& Waters, T. N. (1970a). J. Chem. Soc. A, pp. 400-405.
Baker, E. N., Hall, D. \& Waters, T. N. (1970b). J. Chem. Soc. A, pp. 406-409.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Drew, M. G. B., Prasad, R. N. \& Sharma, R. P. (1985). Acta Cryst. C41, 1755-1758.
Edwards, C., Gilmore, C. J., Mackay, S. \& Stewart, N. (1996). CRYSTAN-GM. Version 6.3.3. Computer Program for the Solution and Refinement of Crystal Structures. MacScience, Japan.
Ferrari, M. B., Fava, G. G. \& Pelizzi, C. (1976). Acta Cryst. B32, 901-908.
Kitajima, N., Whang, K., Moro-oka, Y., Uchida, A. \& Sasada, Y. (1986). J. Chem. Soc. Chem. Commun. pp. 1504-1505.

Milburn, H., Truter, M. R. \& Vickery, B. L. (1974). J. Chem. Soc. Dalton Trans. pp. 841-846.
Okuno, T., Ohba, S. \& Nishida, Y. (1997). Polyhedron, 16, 37653774.

Rigaku Corporation (1993). AFC/MSC Diffractometer Control System. Rigaku Corporation, Tokyo, Japan.
Suzuki, M., Ishikawa, T., Harada, A., Ohba, S., Sakamoto, M. \& Nishida, Y. (1997). Polyhedron, 16, 2553-256I.

Acta Cryst. (1998). C54, 193-195

A Dimeric Copper(II) 4-Chlorophenoxyisobutyrate Adduct with Methanol and a Monomeric Copper(II) 4-Chlorophenoxyisobutyrate Adduct with Pyridine

Yoshiyuki Kani, ${ }^{a}$ Shigeru Ohba, ${ }^{a}$ Hideaki Matsushima ${ }^{b}$ and Tadash Tokir ${ }^{b}$

${ }^{a}$ Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223, Japan, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840, Japan. E-mail: ohba@chem.keio.ac.jp
(Received 1 September 1997; accepted 2 Oclober 1997)

Abstract

In the crystal structure of tetrakis ($\mu-4$-chlorophenoxy-isobutyrato- O, O^{\prime})di(methanol- O) dicopper(II) dimethanol solvate, $\left[\mathrm{Cu}(\text { pciba })_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]_{2} .2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{pcibaH}$ is 4-chlorophenoxyisobutyric acid, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{3}$), there is a dinuclear $\mathrm{Cu}^{I I}$ complex which has a typical cage

structure with a $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 2.6437 (4) \AA. The magnetic $-2 J$ value is $360 \mathrm{~cm}^{-1}\left(H=-2 J S_{1} . S_{2}\right)$. In the crystal structure of trans-bis(4-chlorophenoxy-isobutyrato- O, O^{\prime}) dipyridinecopper(II), [$\mathrm{Cu}(\text { pciba })_{2}-$ $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}$], the monomeric $\mathrm{Cu}^{\text {II }}$ complex has a distorted octahedral coordination.

Comment

The dimeric title compound, (I), has a center of symmetry. The $\mathrm{Cu} 1-\mathrm{O} 4$ bond length is 1.991 (2) \AA, which is $c a 0.02 \AA$ longer than the other CulO (carboxyl) bonds as a result of the hydrogen bond between the O 4 atom and crystal methanol (O 11). The dimeric copper(II) complexes related by translation along \mathbf{c} are connected by two hydrogen-bond bridges, $\mathrm{Cu}-\mathrm{O} 4 \cdots \mathrm{H} 11-\mathrm{O} 11 \cdots \mathrm{H} 10^{\mathrm{i}}-\mathrm{O} 10^{\mathrm{i}}-\mathrm{Cu}^{\mathrm{i}}$ and $\mathrm{Cu} 1-$ $\mathrm{O} 10-\mathrm{H} 10 \cdots \mathrm{O} 11^{\mathrm{i}}-\mathrm{H} 11^{i} \cdots \mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu}^{\mathrm{i}}$ [symmetry code: (i) $1-x,-y,-1-z]$. Several kinds of dimeric cop$\operatorname{per}($ II) phenoxyalkanoates have been prepared and their crystal structures published (Reck \& Jaehnig, 1979; Smith et al., 1985; Mak et al., 1987). However, their magnetic data were not reported. In this study, the magnetic susceptibility of (I) was measured using the Faraday method over a temperature range of $80-300 \mathrm{~K}$, and the $-2 J$ and g values were determined to be $360 \mathrm{~cm}^{-1}$ and 2.22 , respectively, with the mole fraction of the monomeric $\mathrm{Cu}^{\mathrm{II}}$ impurity being 1.3%. It was assumed that crystal methanol molecules were lost from the crystals under reduced pressure. The $-2 J$ value is comparable with those of $\left[\mathrm{Cu}\left(\mathrm{Ph}_{2} \mathrm{MeCCOO}\right)_{2}(\mathrm{EtOH})\right]_{2} \cdot \mathrm{EtOH}$ $\left(-2 J=347 \mathrm{~cm}^{-1}\right.$; Steward et al., 1996) and $[\mathrm{Cu}-$ $\left.\left(\mathrm{PhMe}_{2} \mathrm{CCOO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left(-2 J=348 \mathrm{~cm}^{-1}\right.$; Fujita et al., 1993). This indicates that there is a negligible influence on the antiferromagnetic interaction when a phenyl group is replaced by a phenoxy group bonded at the α-carbon of the bridging carboxylate ions.

(I)

(II)

